Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2-Chloro-2,2-difluoroacetyl)-N',N"diisopropylphosphoric triamide

Mehrdad Pourayoubi* and Anahid Saneei

Department of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

Received 6 February 2011; accepted 14 February 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.095; data-to-parameter ratio = 26.7.

In the title compound, $C_8H_{17}ClF_2N_3O_2P$, the phosphoryl group and the NH unit of the C(O)NHP(O) moiety adopt a syn conformation with respect to each other. The P atom is in a tetrahedral coordination environment and the environment of the N atom of the C(O)NHP(O) moiety is essentially planar. In the crystal, adjacent molecules are linked via $N-H \cdots O$ = P and N-H···O = C hydrogen bonds, building $R_2^2(8)$ and $R_2^2(12)$ rings in a linear arrangement parallel to [110].

Related literature

For metal complexes of phosphoryl donor ligands, see: Gholivand et al. (2010). For a phosphoric triamide compound having a C(=O)NHP(=O) skeleton, see: Pourayoubi et al. (2010). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995). For the synthesis of the starting material, CClF₂C(O)NHP(O)Cl₂, see: Iriarte et al. (2008).

Experimental

Crystal data C₈H₁₇ClF₂N₃O₂P $M_r = 291.67$

Triclinic, $P\overline{1}$ a = 8.1993 (7) Å

b = 9.6735 (9) Å	
c = 9.8331 (9) Å	
$\alpha = 99.784 \ (2)^{\circ}$	
$\beta = 105.999 \ (2)^{\circ}$	
$\gamma = 110.770 \ (2)^{\circ}$	
$V = 669.18 (10) \text{ Å}^3$	

Data collection

Bruker SMART APEXII CCD	9089 measured reflections
area-detector diffractometer	4218 independent reflections
Absorption correction: multi-scan	3337 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.024$
$T_{\min} = 0.602, \ T_{\max} = 0.750$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	158 parameters
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
4218 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2^{i}$	0.88	1.87	2.7295 (13)	164
$N3-H3\cdots O1^{ii}$	0.85	2.14	2.9645 (14)	163

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x, -y + 1, -z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2655).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.
- Gholivand, K., Mahzouni, H. R., Pourayoubi, M. & Amiri, S. (2010). Inorg. Chim. Acta, 363, 2318-2324.

Iriarte, A. G., Erben, M. F., Gholivand, K., Jios, J. L., Ulic, S. E. & Védova, C. O. D. (2008). J. Mol. Struct. 886, 66-71.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o3159.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Z = 2

Mo $K\alpha$ radiation

 $0.26 \times 0.19 \times 0.16~\text{mm}$

 $\mu = 0.42 \text{ mm}^{-1}$

T = 100 K

supplementary materials

Acta Cryst. (2011). E67, o665 [doi:10.1107/S1600536811005435]

N-(2-Chloro-2,2-difluoroacetyl)-N',N''-diisopropylphosphoric triamide

M. Pourayoubi and A. Saneei

Comment

Carbacylamidophosphates with a -C(O)NHP(O)- skeleton have attracted attention because of their roles as the *O*,*O*'-donor ligands for metal complexation (Gholivand *et al.*, 2010). Following our previous works about phosphorus compounds containing C(O)NHP(O) moiety such as $P(O)[NHC(O)C_6H_3(2,6-F_2)][NHC(CH_3)_3]_2$ (Pourayoubi *et al.*, 2010), we report here on the synthesis and crystal structure of $P(O)[NHC(O)CclF_2][NH(C_3H_7)]_2$. Single crystals of title compound were obtained from a solution of CH₃OH and CH₃CN after a slow evaporation at room temperature.

The phosphoryl group and NH unit are *syn* to each other and the phosphorus atom has a slightly distorted tetrahedral configuration (Fig. 1). The bond angles around the P atom are in the range of 103.30 (6)° to 119.69 (6)°. The P—N2 and P—N3 bonds (with bond lengths of 1.6262 (12) Å and 1.6190 (11) Å) are shorter than the P—N1 bond (1.7039 (11) Å). The environment of nitrogen N1 atom is essentially planar. The P=O bond length of 1.4768 (9) Å is standard for phosphoramidate compounds.

In the crystal structure, adjacent molecules are linked *via* N—H···O =P and N—H···O =C hydrogen bonds, building $R_2^2(8)$ and $R_2^2(12)$ rings (Etter *et al.*, 1990; Bernstein *et al.*, 1995) in a linear arrangement parallel to the *ab* plane in the direction of [110] axis (Table 1, Fig. 2).

Experimental

Synthesis of CCIF₂C(O)NHP(O)Cl₂ CCIF₂C(O)NHP(O)Cl₂ was prepared according to procedure reported by Iriarte *et al.* (2008) from a reaction between phosphorus pentachloride (16.91 mmol) and CCIF₂C(O)NH₂ (16.91 mmol) in dry CCl₄ at 358 K (3 h) and then the treatment of formic acid (16.91 mmol) at ice bath temperature; then removing of solvent in vacuum to yield CCIF₂C(O)NHP(O)Cl₂.

Synthesis of title compound To a solution of $CClF_2C(O)NHP(O)Cl_2$ (2.09 mmol) in dry $CHCl_3$, a solution of *N-iso*propylamine (8.36 mmol) in dry $CHCl_3$ was added dropwise and stirred at 273 K. After 4 h, the solvent was evaporated at room temperature. The solid was washed with H₂O. The product was obtained after recrystallization from a methanol/acetonitrile mixture (4:1) after a slow evaporation at room temperature. **IR** (KBr, cm⁻¹): 3400, 3057, 2910, 2890, 2730, 1740 (C=O), 1500, 1260, 1218, 1165, 1118, 1095, 978, 920, 840, 738, 720.

Refinement

All H atoms attached to C atoms and the planar N1 atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl) or 1.0 Å (methine) and N—H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(Cmethine or N)$ or $U_{iso}(H) = 1.5U_{eq}(CH3)$. H atoms for N2 and N3 were located in difference Fourier maps and included in the subsequent refinement using restraints (N-H= 0.86 (1)Å with $U_{iso}(H) = 1.5U_{eq}(N)$. In the last cycles of refinement they were treated as riding on their parent N atoms.

Figures

Fig. 1. An *ORTEP*-style plot of title compound with the atom labeling scheme. Ellipsoids are shown at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Partial packing view showing the formation of the chain through N-H···O hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for the sake of clarity. [Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+1, -z]

N-(2-Chloro-2,2-difluoroacetyl)-N',N"- diisopropylphosphoric triamide

Crystal data	
C ₈ H ₁₇ ClF ₂ N ₃ O ₂ P	Z = 2
$M_r = 291.67$	F(000) = 304
Triclinic, PT	$D_{\rm x} = 1.448 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 8.1993 (7) Å	Cell parameters from 2867 reflections
b = 9.6735 (9) Å	$\theta = 2.3 - 30.9^{\circ}$
c = 9.8331 (9) Å	$\mu = 0.42 \text{ mm}^{-1}$
$\alpha = 99.784 \ (2)^{\circ}$	T = 100 K
$\beta = 105.999 \ (2)^{\circ}$	Prizm, colorless
$\gamma = 110.770 \ (2)^{\circ}$	$0.26 \times 0.19 \times 0.16 \text{ mm}$
$V = 669.18 (10) \text{ Å}^3$	

Data collection

4218 independent reflections
3337 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.024$
$\theta_{\text{max}} = 31.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
$h = -11 \rightarrow 11$
$k = -14 \rightarrow 14$
$l = -14 \rightarrow 14$

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct methods

Least-squares matrix: full	Secondary atom site location: difference Fourier map		
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbourin sites		
$wR(F^2) = 0.095$	H-atom parameters constrained		
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0527P)^2 + 0.0127P]$ where $P = (F_o^2 + 2F_c^2)/3$		
4218 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$		
158 parameters	$\Delta \rho_{max} = 0.56 \text{ e } \text{\AA}^{-3}$		
0 restraints	$\Delta \rho_{min} = -0.30 \text{ e} \text{ Å}^{-3}$		

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$
P1	0.23257 (4)	0.86972 (4)	0.03714 (4)	0.01390 (8)
Cl1	0.30477 (6)	0.56630 (4)	-0.36890 (4)	0.03081 (10)
F1	0.54717 (11)	0.63181 (10)	-0.11562 (10)	0.0284 (2)
F2	0.31465 (14)	0.40675 (9)	-0.19141 (11)	0.0322 (2)
01	0.10801 (14)	0.52987 (10)	-0.10574 (11)	0.0238 (2)
O2	0.37834 (13)	1.03015 (10)	0.10823 (10)	0.0196 (2)
N1	0.33089 (14)	0.77459 (12)	-0.05183 (12)	0.0146 (2)
H1	0.4368	0.8292	-0.0609	0.018*
N2	0.03816 (15)	0.83557 (13)	-0.09290 (12)	0.0182 (2)
H2	-0.0483	0.8420	-0.0661	0.022*
N3	0.16459 (15)	0.79008 (12)	0.15566 (12)	0.0155 (2)
Н3	0.0753	0.6993	0.1225	0.019*
C1	0.25344 (17)	0.61960 (14)	-0.10878 (14)	0.0153 (2)
C2	0.36184 (19)	0.55503 (15)	-0.18656 (15)	0.0192 (3)
C3	0.02381 (19)	0.84469 (16)	-0.24394 (15)	0.0201 (3)
H3A	0.0704	0.7721	-0.2874	0.024*
C4	-0.1816 (2)	0.78961 (18)	-0.33779 (16)	0.0259 (3)
H4A	-0.2525	0.6837	-0.3386	0.039*
H4B	-0.1939	0.7916	-0.4394	0.039*
H4C	-0.2309	0.8581	-0.2959	0.039*
C5	0.1427 (2)	1.00657 (18)	-0.24315 (16)	0.0262 (3)
H5A	0.2750	1.0341	-0.1889	0.039*
H5B	0.1051	1.0809	-0.1947	0.039*

supplementary materials

H5C	0.1246	1.0090	-0.3453	0.039*
C6	0.29579 (18)	0.82087 (16)	0.30596 (15)	0.0208 (3)
H6A	0.3976	0.9277	0.3361	0.025*
C7	0.1941 (2)	0.81568 (18)	0.41385 (16)	0.0268 (3)
H7A	0.1366	0.8888	0.4081	0.040*
H7B	0.2834	0.8442	0.5148	0.040*
H7C	0.0965	0.7108	0.3884	0.040*
C8	0.3848 (3)	0.7080(2)	0.3090 (2)	0.0390 (4)
H8A	0.4568	0.7195	0.2437	0.058*
H8B	0.2867	0.6020	0.2749	0.058*
H8C	0.4685	0.7294	0.4105	0.058*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.01625 (15)	0.00992 (14)	0.01683 (16)	0.00349 (11)	0.01039 (12)	0.00433 (11)
C11	0.0425 (2)	0.0345 (2)	0.02119 (18)	0.01780 (18)	0.01803 (16)	0.00824 (15)
F1	0.0208 (4)	0.0305 (5)	0.0358 (5)	0.0133 (4)	0.0117 (4)	0.0065 (4)
F2	0.0469 (6)	0.0162 (4)	0.0489 (6)	0.0186 (4)	0.0300 (5)	0.0147 (4)
01	0.0247 (5)	0.0128 (4)	0.0318 (5)	0.0005 (4)	0.0187 (4)	0.0040 (4)
02	0.0237 (5)	0.0115 (4)	0.0233 (5)	0.0026 (4)	0.0158 (4)	0.0030 (4)
N1	0.0148 (5)	0.0108 (5)	0.0195 (5)	0.0034 (4)	0.0109 (4)	0.0043 (4)
N2	0.0203 (5)	0.0223 (5)	0.0191 (5)	0.0112 (5)	0.0126 (4)	0.0091 (4)
N3	0.0153 (5)	0.0125 (5)	0.0161 (5)	0.0012 (4)	0.0081 (4)	0.0042 (4)
C1	0.0178 (6)	0.0119 (5)	0.0171 (6)	0.0054 (5)	0.0089 (5)	0.0047 (4)
C2	0.0243 (7)	0.0134 (6)	0.0246 (7)	0.0089 (5)	0.0131 (5)	0.0076 (5)
C3	0.0255 (7)	0.0244 (7)	0.0177 (6)	0.0151 (6)	0.0118 (5)	0.0076 (5)
C4	0.0262 (7)	0.0281 (7)	0.0222 (7)	0.0131 (6)	0.0066 (6)	0.0045 (6)
C5	0.0276 (7)	0.0329 (8)	0.0226 (7)	0.0121 (6)	0.0129 (6)	0.0148 (6)
C6	0.0176 (6)	0.0220 (6)	0.0180 (6)	0.0032 (5)	0.0057 (5)	0.0069 (5)
C7	0.0352 (8)	0.0334 (8)	0.0180 (6)	0.0181 (7)	0.0124 (6)	0.0099 (6)
C8	0.0395 (9)	0.0669 (12)	0.0355 (9)	0.0384 (9)	0.0212 (8)	0.0278 (9)

Geometric parameters (Å, °)

P1—O2	1.4768 (9)	С3—НЗА	1.0000
P1—N3	1.6190 (11)	C4—H4A	0.9800
P1—N2	1.6262 (12)	C4—H4B	0.9800
P1—N1	1.7039 (11)	C4—H4C	0.9800
Cl1—C2	1.7566 (14)	С5—Н5А	0.9800
F1—C2	1.3366 (16)	С5—Н5В	0.9800
F2—C2	1.3351 (15)	C5—H5C	0.9800
O1—C1	1.2127 (15)	C6—C8	1.513 (2)
N1—C1	1.3447 (15)	C6—C7	1.5164 (19)
N1—H1	0.8800	С6—Н6А	1.0000
N2—C3	1.4775 (17)	С7—Н7А	0.9800
N2—H2	0.8390	С7—Н7В	0.9800
N3—C6	1.4754 (17)	С7—Н7С	0.9800
N3—H3	0.8536	С8—Н8А	0.9800

C1—C2	1.5399 (17)	C8—H8B	0.9800
C3—C5	1.520 (2)	C8—H8C	0.9800
C3—C4	1.5207 (19)		
O2—P1—N3	112.27 (5)	C3—C4—H4A	109.5
O2—P1—N2	119.69 (6)	C3—C4—H4B	109.5
N3—P1—N2	103.94 (6)	H4A—C4—H4B	109.5
O2—P1—N1	105.13 (5)	С3—С4—Н4С	109.5
N3—P1—N1	112.31 (5)	Н4А—С4—Н4С	109.5
N2—P1—N1	103.30 (6)	H4B—C4—H4C	109.5
C1—N1—P1	122.76 (9)	С3—С5—Н5А	109.5
C1—N1—H1	118.6	С3—С5—Н5В	109.5
P1—N1—H1	118.6	H5A—C5—H5B	109.5
C3—N2—P1	123.77 (9)	C3—C5—H5C	109.5
C3—N2—H2	116.2	H5A—C5—H5C	109.5
P1—N2—H2	117.0	H5B—C5—H5C	109.5
C6—N3—P1	121.89 (8)	N3—C6—C8	111.29 (12)
C6—N3—H3	112.7	N3—C6—C7	109.51 (11)
P1—N3—H3	117.9	C8—C6—C7	111.49 (12)
01—C1—N1	126.01 (12)	N3—C6—H6A	108.1
O1—C1—C2	118.79 (11)	С8—С6—Н6А	108.1
N1—C1—C2	115.19 (10)	С7—С6—Н6А	108.1
F2—C2—F1	107.66 (11)	С6—С7—Н7А	109.5
F2—C2—C1	109.72 (10)	С6—С7—Н7В	109.5
F1—C2—C1	112.14 (11)	Н7А—С7—Н7В	109.5
F2—C2—Cl1	108.56 (10)	С6—С7—Н7С	109.5
F1—C2—C11	108.94 (9)	Н7А—С7—Н7С	109.5
C1—C2—Cl1	109.74 (9)	Н7В—С7—Н7С	109.5
N2—C3—C5	111.99 (11)	С6—С8—Н8А	109.5
N2—C3—C4	108.48 (11)	С6—С8—Н8В	109.5
C5—C3—C4	112.00 (12)	H8A—C8—H8B	109.5
N2—C3—H3A	108.1	С6—С8—Н8С	109.5
С5—С3—НЗА	108.1	H8A—C8—H8C	109.5
С4—С3—Н3А	108.1	H8B—C8—H8C	109.5
O2—P1—N1—C1	168.43 (10)	01—C1—C2—F2	-22.92 (17)
N3—P1—N1—C1	46.05 (12)	N1—C1—C2—F2	158.19 (11)
N2—P1—N1—C1	-65.33 (11)	O1-C1-C2-F1	-142.50 (13)
O2—P1—N2—C3	72.29 (12)	N1-C1-C2-F1	38.60 (15)
N3—P1—N2—C3	-161.47 (10)	01—C1—C2—Cl1	96.28 (13)
N1—P1—N2—C3	-44.04 (11)	N1-C1-C2-Cl1	-82.62 (12)
O2—P1—N3—C6	-36.29 (12)	P1—N2—C3—C5	-61.53 (14)
N2—P1—N3—C6	-167.07 (10)	P1—N2—C3—C4	174.35 (9)
N1—P1—N3—C6	81.94 (11)	P1—N3—C6—C8	-89.23 (13)
P1—N1—C1—O1	0.56 (19)	P1—N3—C6—C7	147.05 (10)
P1—N1—C1—C2	179.37 (9)		
Hydrogen-bond geometry (Å, °)			
D—H···A	<i>D</i> —Н	H····A	D···A D—H···A

supplementary materials

N1—H1···O2 ⁱ	0.88	1.87	2.7295 (13)	164
N3—H3···O1 ⁱⁱ	0.85	2.14	2.9645 (14)	163
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$; (ii) $-x$, $-y+1$, $-z$.				

Fig. 1

